

The Nexus of Hybrid Power Plants and Policy – IEA Task 50

Matthew Kotarbinski NREL 7/13/2023

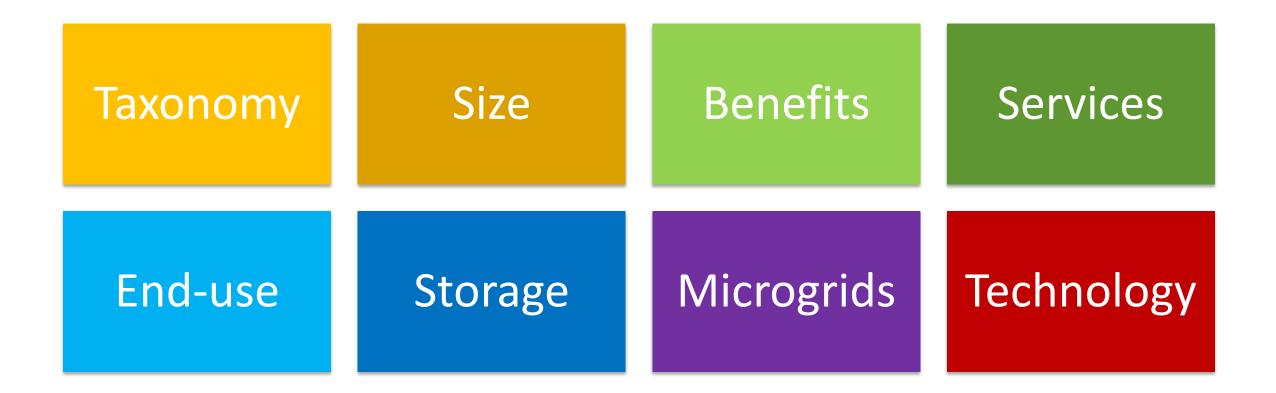
Photo by Dennis Schroeder, NREL 55200

IEA Task 50 Objectives & Expected Results

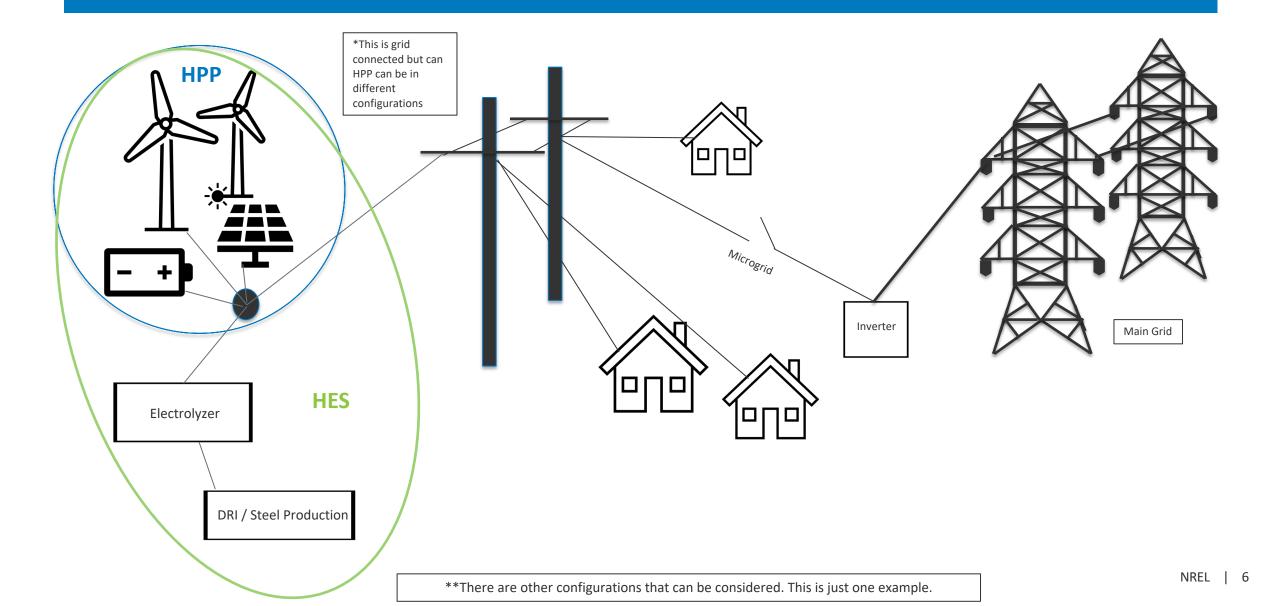
- Why do we need Hybrid Power Plants?
 - Enhance flexibility of renewable generation
 - Provide reliability for the grid of the future
 - Catalyst in helping achieve renewable electricity and decarbonization targets
- Objectives and Outcomes:
 - Goal: Accelerate the development and deployment of hybrid power plants
- Work Packages
 - WP1: Collection of research results, state-of-the-art and expert consensus
 - WP2: Reference hybrid plant Will include a reference design with hydrogen
 - WP3: Overview of technology and design/operation algorithms
 - WP4: Electrical Design, Control, and Market/Grid Services
 - WP5: Outreach and Collaboration with TCPs, Tasks, and R&D

Work Package 1 – Challenge & Goal

- Challenge
 - Hybrids are highly complex systems that must be customized based on site and application-specific needs
 - There is no definition or clear taxonomy as to what a hybrid plant currently is
 - Terminology is not used consistently across sectors


• Goal –

- Identify language and define what a hybrid plant is, and to coordinate preferred language to develop consistent terms across the research field
- Development of hybrid power plant terminology
- Establish a global understanding of what hybrids are
 - What technologies should be included?



Work Package 1 – First in-person meeting, WESC, Monday, May 22nd Status Update

Themes from Detailed Discussions

Visualization Example

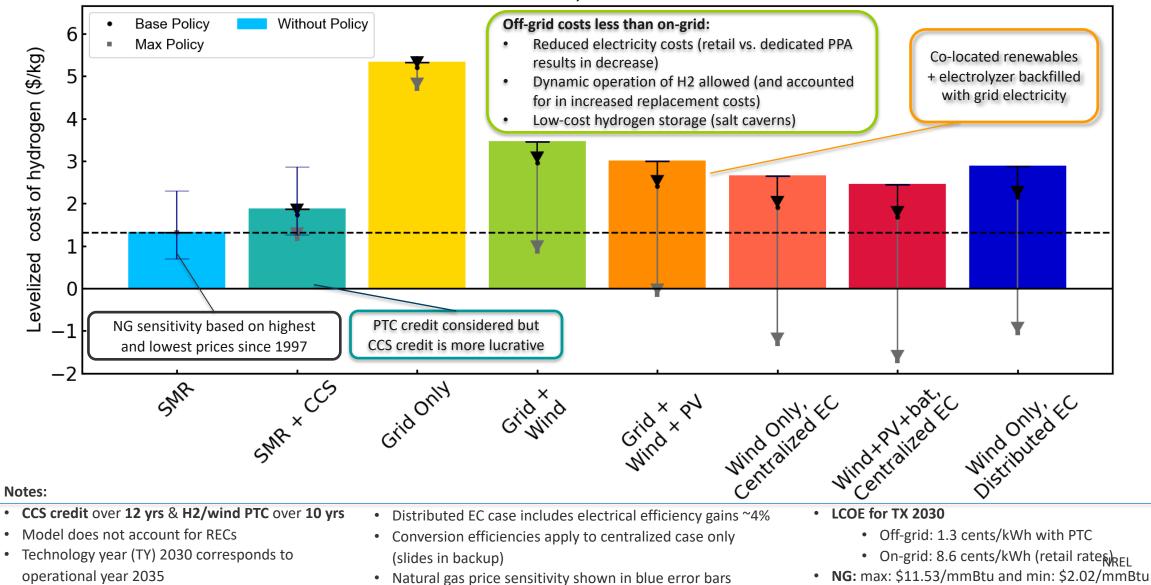
Work Package 1 – Result

- 7 different draft definitions to date
- Sub definitions will be developed
 - A hybrid dictionary to define the various subcategories of HPPs
 - Grid-connected
 - Off-grid
 - Islanded
 - Utility-scale
 - Integrated
- Draft Definition 1.6
 - "An HPP is a combination of two or more electricity generation and/or two or more storage technologies used to provide electrical power services through coordinated bi-directional power flow."

The Inflation Reduction Act – Policy Considerations

Policy Scenarios

- Three common scenarios:
 - No Policy Baseline
 - Base Lowest 100% value
 - Max/Bonus includes 5X and bonus values
- Stackability of provisions
- Credits applied
 - PTC, ITC, H2 PTC, tech-neutral counterparts, ITC for storage and H2 process
- Additional considerations:
 - Prevailing wage and apprenticeship (5X)
 - Domestic content bonus (10%)
 - Energy community bonus (10%)


Policy	ITC (%)	PTC * (\$/kWh)	H ₂ PTC ** (\$/kg-H ₂)
No Policy	0	0	0
Base PTC	0	0.003	0.60
Max PTC	0	0.015	3.00
Bonus PTC	0	0.0165	3.00
Base ITC	6	0	0.60
Max ITC	30	0	3.00
Bonus ITC	40	0	3.00
* - 1992 dollars			

* = 1992 dollars

** = 2022 dollars

Delivered LCOH in Best Location Analyzed: Texas, TY 2030. With Max Policy, All Locations Compete With SMR!

TX, 2030

Takeaways

- IRA policy is a game changer:
 - Climate policy makes things possible in the USA
 - Battery does change in some locations policy can drive technology design
 - Incentives can lower costs which can offset increased technology costs
 - More cost-effective than FE-CCUS, advanced nuclear and siloed systems.
 - Integrated H2 will fully qualify for the full clean hydrogen \$3/kg PTC
 - Wind & solar can take direct advantage of the full
 PTC & ITC credits

(Photo by Josh Bauer / Bryan Bechtold / NREL)

Thank you – Questions?

matthew.kotarbinski@nrel.gov

www.nrel.gov

Transforming ENERGY