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Why Medium Duration Energy Storage (MDES) really matters
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A WIDE RANGE OF TIMES.

Energy storage (for supporting the electricity grid) matters

over timescales ranging from ~1s to ~2.5years.

2.5 years = ~80million s = 22° s

Shorter than 1s ... handled naturally (and locally) by inertia

Longer than 2.5 years ... build more wind-turbines/PV-panels!
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A LOGARITHMIC SCALE FOR TIME ...

In music, 1 “octave” corresponds to a factor of 2 in frequency
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In music, 1 “semi-tone” ... a factor of 2(1/12) 4, frequency ...

2(1/12)=1,0595. log(2(1/12)) = 10g(2)/12 = 0.0578

't The concept of a “semi-tone” can be related to log(time)



A LOGARITHMIC SCALE FOR TIME
STATIONTOSTATIONDAVIDBOWIE

https:/ /www.youtube.com /watc
hev=2Y77zDzNmYw

The song It’s too late by David
Bowie in this 1976 album uses
a nice simple repeating pattern
of semi-tone up-down-up-down

(Play from 1:10 — 1:30)

r B In case a “semi-tone” means nothing to you ...



THE RELATIVE IMPORTANCE OF DIFF. DISCHG. DURMS,
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Net Demand for the UK over 10 years with if 75% of generation was from wind and 25%
generation from PV and 10% over-capacity (i.e. the average value here is slightly negative).
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THE RELATIVE IMPORTANCE OF DIFF. DISCHG. DURMS,
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Examine each continuously-positive section in turn and sort these into 3 different “Bins”...

Thischarge <4hrs: SDES. (Batteries) <1% of energy from storage
4hrs < Tpischarge < 200 hrs: MDES. (CAES, LAES, PTES. ...) ~92% of energy from storage

Tpischarge = 200 hrs: LDES. (Hydrogen, Ammonia, ...) ~7% of energy from storage



MORE INSIGHT INTO DISCHARGE DURATIONS

You can analyse Net Demand for any future energy scenario to discover how the energy that would be discharged from
storage is distributed over various different discharge times. The data below is that used in the Royal Society report.

Net demand vs time (for 324360 hours)
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MORE INSIGHT INTO DISCHARGE DURATIONS:

Splitting the data into many more divisions yields a probability density function (PDF) showing how storage output energy is
distributed over periods of continuous discharge. ‘Can use either linear or logarithmic scale for discharge time.

e 10% PDF for energy di -ged vs cont discharge times . <105 Logarithmic PDF for energy discharged vs cont discharge times
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. The “periodicity” on the linear scale of discharge times reflects the fact that if storage is discharging for
Eottinﬁham 17 hrs (first peak) it is quite likely to continue discharging for (17+24) hrs or (17+48) hrs.
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A TOOL FOR SYSTEMS WITH N STORES.

With 2 or more stores in the system, we must address scheduling.

A gOOd SChedUI|ng approaCh for 25 (n 0I;A)arglnal valu?s ofenerg‘y in store vs fill frac?on : :
o o i Hyd.
the operation of multiple stores L '
in a system is described by = | / Clacags™ Hydrogen storage: discharging
ZaChary et al' [1] % ' “ ACAES storage: discharging
| N ACAES storage: charging p—
° ® ° ° E ‘\' _________ N - —— - - o - - - - - ' b
ThIS IS |mp|ementEd N ... 05 /'\ Hydrogen storage: charging — 3
(77Hyd 0 5) (Macars.”>)
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Fill fraction -=> ()

University of

Nottingham application to future GB storage needs. In review.
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. [1] Zachary, S. Scheduling and dimensioning of heterogeneous energy stores with
g
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FOR AN AFFORDABLE NET ZERO UK ...

Percentage reduction in the cost of electricity with

Blending MDES Wifh H2 STOI‘CIge ACAES + H2 storage compared to H2 storage only

(Significant uncertainty exists about
future costs of power conversion
machinery for ACAES and
roundtrip efficiency so optimise
many different cases .

COST REDUCTION %
-
o N B o e O L2

EFFICIENCY %

POWER COST £/KW

R.E. £35/MWh |R.E. £40/MWh |R.E. £45/MWh

Hydrogen in Caverns only £57.83 /MWh  £64.48 /MWh  £71.10 /MWh

Hydrogen + ACAES £56.24 /MWh  £62.00 /MWh  £68.77 /MWh
Hydrogen + ACAES + WIS £55.49 /MWh  £61.22 /MWh  £67.83 /MWh
. ACAES Only £65.40 /MWh  £72.24 /MWh  £78.57 /MWh
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FEATURES OF A SYSTEM INCLUDING LDES&MDES

Most energy from storage will pass

out from MDES, not from LDES

With MDES, the over-generation
factor reduces from ~1.3 to ~1.2

The spend on MDES is similar to that

on H, — although the MDES stores
are much smaller.
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Store #1:
Store #2:

Total energy (in,out)=(2975.91, 2022.24) (Twh)
Total energy (in,out)=(3463.36,1402.59) (Twh)

St orage cost conponents (NPV) |isted here

[--------- S coococoooocoooc e cSccocoococcoocoooon dbococococococooa |
| Store # | Elenent | Val ue | Cost (£bn) |
[--------- S cooococoooooc I cococococooccocosas dbcccococcooooo |
| 1 | IP Power | 43.54 (GW | 16. 18 |
| 1 | OP Power | 32.31 (GN | 15. 28 |
| 1 | Energy Cap. | 5.07 (TWh) | 18. 53 |
| 1 | Enrgy Dfct. | 1.09 (Twh) | 0. 07 |
[--------- e cococcoooooc b cccccoooccooooos dbeccocooco=o=-o |
| 2 | IP Power | 36.24 (GN | 19. 21 |
| 2 | OP Power | 60.84 (GWN | 30. 50 |
| 2 | Energy Cap. | 47.21 (Twh) | 37.55 |
| 2 | Enrgy Dfct. | 6.84 (Twh) | 0. 45 |
[--------- dfecoco=-ccooooc b cccccoooccoooooo dbeccocoocoooo= |
Ceneration costs given now

I e b cccccooococoo-coo dbsccocoocooo== |
| El ement | Val ue | Cost (£bn) |
I e b cccccoooccoooooo dbecccooco=oo= |
| Genn. to nmeet demand | 21090. 00 (Twh) | 391.91 |
| Losses & Curtailment | 4748.87 (Twh) | 88. 25 |
I e ccocccoooccooooos dbsccoooco=o=-o |



TECHNOLOGIES FOR MDES .

These are many and varied — but mostly thermo-mechanical.

i Level 2 categorisation
=

'I'hermo—Mechamcal EIEO Level 3 categorisation

Pumped-Hydro Other Gravitational PE (solid Compressed Air Energy Liquid Air Energy Storage CO2 Battery
material) Storage
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CONCLUSIONS

* You may have learned a new unit here —the per-semitone !

 We have seen PDFs (Probability Distribution Functions) showing how the
energy that comes out of energy storage will be distributed over different
discharge durations.

 Tools exist to elucidate the role of MDES ...

StO raéa www. TinyURL.com/LS-MDES-task

ology Collal

MDES matters — a lot!
't
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Thanks for listening. Seamus.Garvey@Nottingham.ac.uk
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