

Metal oxide cycles for high temperature heat and longer energy storage

Tomasz Wronski

University of Birmingham, School of Chemical Engineering, Birmingham, West Midlands, United Kingdom t.m.wronski@bham.ac.uk

Adriano Sciacovelli

University of Birmingham, School of Chemical Engineering, Birmingham Energy Institute, United Kingdom a.sciacovelli@bham.ac.uk

H

- I. Project presentation and metal energy cycle
- II. Experimental investigation of iron combustion in a fluidized bed
- III. Euler-Euler simulation of iron combustion in a fluidized bed
- IV. Conclusions

Project MixMOXes :

Mixed Metal Oxides Energy Stations for zero-carbon thermal energy generation with integrated heat storage – EP/X000249/1

EPSRC

Engineering and Physical Sciences Research Council

Objective:

Investigate and understanding of zero-carbon energy storage release through metal cycles (iron)

I- Project presentation and metal energy cycle

Metal oxides energy cycle

4

Metal oxides energy cycle

➔ Compromise between energy densities, price, and availability

Technological roadblocks :

Reduction processes: high CapEx/OpEx Combustion processes: particle emissions

Wronski T. & Sciacovelli A., Analysis of the potential of four reactive metals as zero carbon energy carriers for energy storage and conversion, 2024.

The iron-based energy storage & conversion cycle

II - Experimental investigation of iron combustion in a fluidized bed

Rig setup Ventilation hood N2 Air Thermocouple (VFM (vfm Furnace Cylindrical Furnance Differential (Radiative pressure probe heater) Quartz Frit Distribution Distributor Plate plate Quartz Reactor (6 cm OD)

Thermocouple & pressure tap (atmospheric)

7

Fluidization

	Oxide (125-250 µm)	lron (90-150 μm)
Minimum fluidization velocity (m/s)	0.037	0.022
First bubble (m/s)	0.064	0.030
Turbulent transition (m/s)	0.163	0.084

Coherent with analytical predictions (Wen and Yu equation)

II - Experimental investigation of iron combustion in a fluidized bed

Oxidation case - example:

Initial oxide mass	90	g
Oxide particle size range	125-250	μm
Initial iron mass	10	g
Iron particle size range	< 90	μm
Initial bed temperature	730	°C
O ₂ fraction during combustion	9.8	%
Superficial velocity	0.37	m/s

9

First observations:

Fig. 4. Schematic of the three combustion modes of a metal particle. Adapted from Bergthorson et al. [26].

First observations:

Aggregates formed between inert and combusting particles.

- □ Melting/sintering Of iron leads to formation of aggregates and to partial defluidization at lower gas velocities.
- □ Aggregation is heavily reduced by increasing gas velocity and bed turbulence.

- □ Reaction rate difficult to measure, but seems consistent with single particle combustion rates.
- □ Phase-level heat dissipation seems consistent with CFD model.

Boundary and initial conditions

Initial & boundary conditions: □ Transient, 3D, circular □ Initial oxide bed at 1100 K □ Iron injection at 300 K

Numerical model:

□ Eulerian multiphase model: 3 phases represented by their volume fractions

Conservation equations:

□ Mass:

$$\frac{1}{\rho_{rq}} \left(\frac{\partial}{\partial t} (\alpha_q \rho_q) + \nabla (\alpha_q \rho_q \vec{v}_q) = \sum_{p=1}^n \dot{m}_{pq} \right)$$

 $\square \text{ Momentum:} \quad \frac{\partial}{\partial t} (\alpha_q \rho_q \vec{v}_q) + \nabla (\alpha_q \rho_q \vec{v}_q \vec{v}_q) = -\alpha_q \nabla p + \nabla (\bar{\tau}_q + \alpha_q \rho_q \vec{g} + \sum_{p=1}^n K_{pq} (\vec{v}_p - \vec{v}_q) + \dot{m}_{pq} \vec{v}_{pq} + \vec{F}_{td,q})$

□ Energy:

$$\frac{\partial}{\partial t} \left(\alpha_q \rho_q \left(e_q + \frac{\vec{v}_q^2}{2} \right) \right) + \nabla \cdot \left(\alpha_q \rho_q \vec{v}_q \left(h_q + \frac{\vec{v}_q^2}{2} \right) \right)$$
$$= \nabla \cdot \left(\alpha_q k_{eff,q} \nabla T_q - \sum_j h_{j,q} \vec{J}_{j,q} + \bar{\tau}_{eff,q} \cdot \vec{v}_q \right) + \sum_{p=1}^n (Q_{pq} + \dot{m}_{pq} h_{pq}) + p \frac{\partial \alpha_q}{\partial t} + S_q$$

Chemical species conservation and reaction rate formulation

$$\frac{\partial}{\partial t} \left(\rho^{\boldsymbol{q}} \alpha^{\boldsymbol{q}} Y_{i}^{\boldsymbol{q}} \right) + \nabla \cdot \left(\rho^{\boldsymbol{q}} \alpha^{\boldsymbol{q}} \vec{v}^{\boldsymbol{q}} Y_{i}^{\boldsymbol{q}} \right) = -\nabla \cdot \alpha^{\boldsymbol{q}} \vec{J}_{i}^{\boldsymbol{q}} + R \cdot M_{i}$$

□ Burn time of a single iron particle in air¹: $t_b = 0.000079 * d_p^{-1.65}$

□ User Defined Function:

$$R = \frac{\rho_{Fe} \alpha_{Fe}}{t_b * M W_{Fe}} * \frac{1}{1 + \exp(-100 * (Y_{O_2} - 0.05))}$$
(kmol.m⁻³.s⁻¹)

¹ Ning et al., Burn time and combustion regime of laser-ignited single iron particle, 2021

Qualitative analysis for stoichiometric mixture

□ Iron injection: 1 kg/h □ Fluidizing velocity: 0.2 m/s □ Nominal heat output: 2 kW

III- Euler-Euler simulation of iron combustion in a fluidized bed

Quantitative comparison: 9 cases

Time to stabilization and iron buildup in the reactor increase with mixture fraction and decrease with turbulence.

Surplus time to be compared with particle residence time.

□ Effects on combustion efficiency.

Time-averaged heat generation rate

Reaction occurs mainly at the bottom (and surface) of the bed.

- Higher velocity: higher power density, taller bed, and increased mixing.
- Higher mixture fraction: shifts reaction towards the bottom.

Conclusions

CFD EXP Similar fluidization behaviour for metal and oxide particles, removing the need for a third inert material. Remains to be tested with actual product particles.

- **CFD** □ Limits of Euler-Euler approach: need to account for particle-level reaction rates and temperature increase (→ vaporization ?).
- **EXP** Near future: assessment of combustion efficiency and product analysis.
- EXP □ Limits of batch experiments: much higher fraction of iron in the bed compared to continuous operation → impact on aggregation and local oxygen fraction.

MIX-MOXes - Mixed Metal Oxides Energy Stations for zerocarbon thermal energy generation with integrated heat storage (EP/X000249/1)

Tomasz Wronski

t.m.wronski@bham.ac.uk

Adriano Sciacovelli

a.sciacovelli@bham.ac.uk

