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Introduction
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Heat decarbonisation options and opportunities
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® Potential for integration with renewables

e Efficient and affordable thermal energy storage (TES)
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Current domestic heating

® User control and
on-demand

® Gas is relatively cheap

® Gas boilers are robust,
flexible and familiar

® Hot water tanks are
removed

® Poor insulation )

® Complete decarbonisation

e Affects all customers
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Introduction
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System flexibility and wind curtailment
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DISPATCH project
.

Bottom-up approach (Scalable VM-VEP): Four aggregation levels
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DISPATCH project
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Local energy markets

—» Energy =
BAU Cash flows T
— Community trading Cash flows
® Coordinate demand for locally
AR T generated renewable energy

Ampor®

® Enables special pricing when
trading with vulnerable
households facing energy poverty
® Prosumers benefit the Most

® Prosumers benefit a bit less if fuel
poor households get a lower price

Andoni et al.: Local Energy Markets in Energy Communities and Their Impact on Energy Poverty, 2024 International Conference on Renewable
Energies and Smart Technologies (REST), 2024
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DISPATCH project
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Automated negotiations
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Courand et al.: Enhancing Access to Affordable Energy Through Peer-to-Peer Automated Negotiations, 2024 International Conference on Renewable <! &
Energies and Smart Technologies (REST), 2024 OINeS
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Thermal energy integration
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Design of the future energy system

® coal © offshore wind (DC) @  onshore wind @ gasturbinewithCCS @ hydro @ nuclear
@ offshore wind (AC) @  biomass @ combined-cyclegas O solar O rooftop solar
@® 6w . 30 GW w transmission line e HVDC link — 5 GW = 10 GW

® Generation capacities in the Leading the Way scenario for 2025, 2035 and 2045

Lyden, Sun, Struthers, Franken, Hudson, Wang, Friedrich: PyPSA-GB: An open-source model of Great Britain's power system for simulating future

energy scenarios, Energy Strategy Reviews, 53, 2024 e 5
Franken, Hackett, Lizana, Riepin, Jenkinson, Lyden, Yu, Friedrich: Power system benefits of simultaneous domestic transport and heating demand TR’

flexibility in Great Britain's energy transition, Applied Energy, 2025
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Thermal energy integration
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Benefits of simultaneous domestic transport and heating flexibility
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® Total system changes for different years assuming FES Leading the Way scenario
® Flexible EV charging and heating can provide significant energy system benefits

® The model also shows where these benefits and changes occur

Franken, Hackett, Lizana, Riepin, Jenkinson, Lyden, Yu, Friedrich: Power system benefits of simultaneous domestic transport and heating demand

flexibility in Great Britain's energy transition, Applied Energy, 2025
Lyden, Sun, Struthers, Franken, Hudson, Wang, Friedrich: PyPSA-GB: An open-source model of Great Britain's power system for simulating future

energy scenarios, Energy Strategy Reviews, 53, 2024 8
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Thermal energy integration
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Location of changes due to EV and heat flexibility
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Franken, Hackett, Lizana, Riepin, Jenkinson, Lyden, Yu, Friedrich: Power system benefits of simultaneous domestic transport and heating demand DS
flexibility in Great Britain's energy transition, Applied Energy, 2025
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Large-scale thermal storage
°

INTEGRATE and Heat Balance prOJects

® Charge large thermal storage with otherwise curtailed wind energy
® |mproves utilisation of limited renewable resource
® Reduces need for grid reinforcement
® Reduces electricity demand for heating in winter
® Provides system resilience
In conjunction with heat production units, large-scale thermal storage can provide
electricity network services support such as frequency response and balancing

S

30Ty,

g@ugskks - ' Umvemty . THE UNIVERSITY [ g
: &Y
IOFNHVUELRL 0 G asgow of EDINBURGH Research Council OINe
10/13

Daniel Friedrich DISPATCH & INTEGRATE, November 2024



Temperature profiles
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Large-scale thermal storage
°
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(b) End of first discharge cycle

® Charge and discharge rates increase with decreasing cycle lengths

® Reducing the cycle length increases energy recovery and energy density, and

therefore overall efficiency and storage capacity

® Good agreement between TRNSYS and OpenGeoSys (OGS)

® OGS work by Prof Gioia Falcone and team at Uni Glasgow

Desguers, Brown, Kolo, Banks, Falcone, Friedrich: Short-cycle Borehole Thermal Energy Storage: Impact of Thermal Cycle Duration on Overall

Performance, Applied Thermal Engineering, 2025
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iummary
Key takeaways

® Thermal energy can provide flexibility and benefits to the wider
system and should be a vital part to provide an affordable,
sustainable and reliable energy system

® Thermal energy storage can provide reliable thermal energy for
district heating at reduced running costs and with lower
emissions while, at the same time, providing a large percentage
of that energy from otherwise curtailed wind energy

©® Commercial and regulatory barriers need to be overcome to
make this a reality
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Summary
[ ]

Questions?

Thank you for your attention!
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