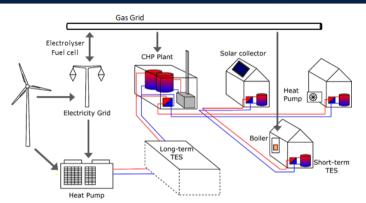


#### Decarbonising heating from the individual to the district


#### Daniel Friedrich

Institute for Energy Systems School of Engineering University of Edinburgh

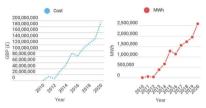
Decarbonising UK domestic heating: Disruptive approaches
November 2024

d.friedrich@ed.ac.uk

#### Heat decarbonisation options and opportunities



- Large scale and distributed nature of the heat demand
- Potential for integration with renewables
- Efficient and affordable thermal energy storage (TES)


#### **Current domestic heating**

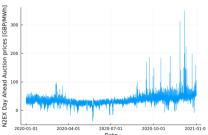
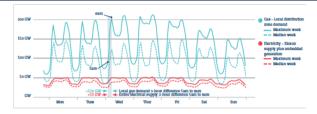
- User control and on-demand
- Gas is relatively cheap
- Gas boilers are robust, flexible and familiar
- Hot water tanks are removed
  - Poor insulation

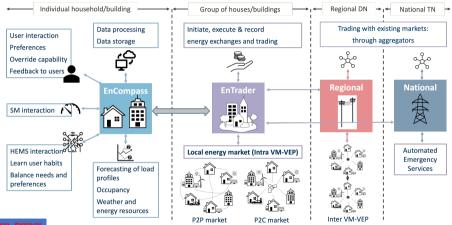
#### Challenges

- Complete decarbonisation
- Affects all customers

## System flexibility and wind curtailment



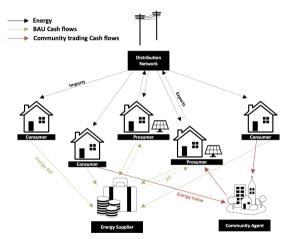


Image from the National Transmission System
Wilson et al., Challenges for the decarbonisation of heat: local gas demand vs electricity supply Winter 2017/2018



- Daily linepack in the gas grid of up to 690 GWh
- Peak daily and hourly gas demand up to four times the electricity demand
- 1 hour difference in demand over 7 times larger for gas compared to electricity
- Wind energy curtailment is increasing and predicted to reach costs of £1B

Wilson and Rowley, Flexibility in Great Britain's gas networks: analysis of linepack and linepack flexibility using hourly data, 2019

# Bottom-up approach (Scalable VM-VEP): Four aggregation levels

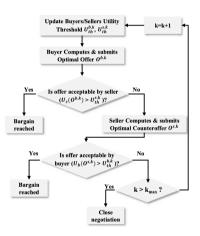


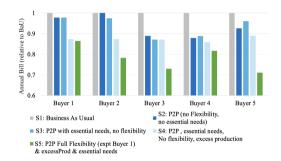



Lead by Prof Sasa Djokic with partners at Heriot-Watt University and University of Glasgow as well as industrial and public sector partners



## Local energy markets



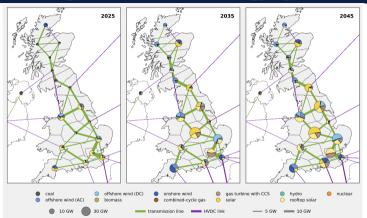


- Coordinate demand for locally generated renewable energy
- Enables special pricing when trading with vulnerable households facing energy poverty
- Prosumers benefit the Most
- Prosumers benefit a bit less if fuel poor households get a lower price

Andoni et al.: Local Energy Markets in Energy Communities and Their Impact on Energy Poverty, 2024 International Conference on Renewable Energies and Smart Technologies (REST), 2024



#### **Automated negotiations**



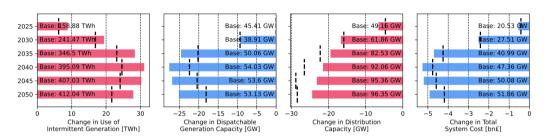



- Peer-2-peer trading with some flexibility could significantly reduce costs
- Incorporating also essential energy needs can reduce savings for others prosumers

Courand et al.: Enhancing Access to Affordable Energy Through Peer-to-Peer Automated Negotiations, 2024 International Conference on Renewable Energies and Smart Technologies (REST), 2024



#### Design of the future energy system



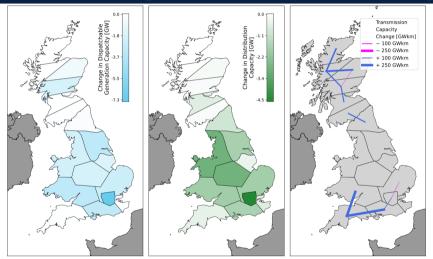

• Generation capacities in the Leading the Way scenario for 2025, 2035 and 2045

Lyden, Sun, Struthers, Franken, Hudson, Wang, Friedrich: PyPSA-GB: An open-source model of Great Britain's power system for simulating future energy scenarios, Energy Strategy Reviews, 53, 2024
Franken, Hackett, Lizana, Riepin, Jenkinson, Lyden, Yu, Friedrich: Power system benefits of simultaneous domestic transport and heating demand flexibility in Great Britain's energy transition. Applied Energy. 2025



# Benefits of simultaneous domestic transport and heating flexibility




- Total system changes for different years assuming FES Leading the Way scenario
- Flexible EV charging and heating can provide significant energy system benefits
- The model also shows where these benefits and changes occur

Franken, Hackett, Lizana, Riepin, Jenkinson, Lyden, Yu, Friedrich: Power system benefits of simultaneous domestic transport and heating demand flexibility in Great Britain's energy transition, Applied Energy, 2025 Lyden, Sun, Struthers, Franken, Hudson, Wang, Friedrich: PyPSA-GB: An open-source model of Great Britain's power system for simulating future energy scenarios, Energy Strategy Reviews, 53, 2024



Summary

## Location of changes due to EV and heat flexibility





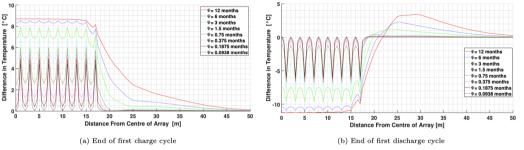
Franken, Hackett, Lizana, Riepin, Jenkinson, Lyden, Yu, Friedrich: Power system benefits of simultaneous domestic transport and heating demand flexibility in Great Britain's energy transition, Applied Energy, 2025

#### **INTEGRATE** and Heat Balance projects



- Charge large thermal storage with otherwise curtailed wind energy
  - Improves utilisation of limited renewable resource
  - Reduces need for grid reinforcement
  - Reduces electricity demand for heating in winter
  - Provides system resilience
- In conjunction with heat production units, large-scale thermal storage can provide electricity network services support such as frequency response and balancing










ngineering and nysical Sciences esearch Council

# Temperature profiles for short-cycle BTES



- Charge and discharge rates increase with decreasing cycle lengths
- Reducing the cycle length increases energy recovery and energy density, and therefore overall efficiency and storage capacity
- Good agreement between TRNSYS and OpenGeoSys (OGS)
  - OGS work by Prof Gioia Falcone and team at Uni Glasgow

DIN N

Desguers, Brown, Kolo, Banks, Falcone, Friedrich: Short-cycle Borehole Thermal Energy Storage: Impact of Thermal Cycle Duration on Overall Performance, Applied Thermal Engineering, 2025

## Key takeaways

Thermal energy integration

- Thermal energy can provide flexibility and benefits to the wider system and should be a vital part to provide an affordable, sustainable and reliable energy system
- 2 Thermal energy storage can provide reliable thermal energy for district heating at reduced running costs and with lower emissions while, at the same time, providing a large percentage of that energy from otherwise curtailed wind energy
- 3 Commercial and regulatory barriers need to be overcome to make this a reality

#### **Questions?**

# Thank you for your attention!

#### **Acknowledgements**

- All projects are performed in collaboration with my team and collaborators
- The work is supported by EPSRC, Innovate UK, Ofgem and ESRC-GCRF