The role of distributed thermal energy storage in achieving Net Zero DHW and Space Heating

Miguel Angel Pans Castillo

Introduction

2G: IN SITU

3G: PREFABRICATED

4G: 4th GENERATION

1G: STEAM

Greenhouse gas emissions by sector, 2020, by proportion (BEIS, 2022)

Objectives

- i. A novel model was used to simulate a theoretical ultra-low carbon district heating network (ULC-DHN) located at **Holywell Park, Loughborough University (Loughborough, UK).**
- **ii. The proposed ULC-DHN system includes heat pumps (HPs), evacuated-tube solar thermal collectors (ETSTCs) and seasonal thermal energy storage (STES) to provide heat to buildings.**
- iii. Both a) real historic half-hourly CO₂ emissions per kWh of electricity and b) real historic half-hourly heat demands **for Holywell Park are used in the simulations.**
- **iv. The effect of:**
	- **a. Using onsite Wind-generated electricity vs. using onsite PV-generated electricity to power the HPs;**
	- **b. The location of the ULC-DHN - three locations were assumed: Loughborough, Bournemouth and Glasgow** on the share of heating demand met by onsite zero-carbon heat sources and the levelized cost of heat (LCOH) for the **period 2000 – 2019 (20 years) was studied.**

Methodology: Map of the Holywell Park at Loughborough University (UK) showing the three buildings and the proposed ULC-DHN.

Methodology: Flow diagram illustrating the order of priority of heat supply approaches for the ULC-DHN configurations.

- 1. Pans Castillo, Miguel Angel and Claudio, Gianfranco and Eames, Philip, Transition Pathways for a Gas Supplied District Heating Network to an Ultra Low Carbon District Heating Network: A Case Study for Holywell Park, Loughborough University. Available at **SSRN: https://ssrn.com/abstract=4946865 or <http://dx.doi.org/10.2139/ssrn.4946865>**
- 2. M.A. Pans, P.C. Eames, A study of the benefits of including thermal energy stores in district heating networks, Renew. Energy. **(2024) 120887. [https://doi.org/10.1016/J.RENENE.2024.120887.](https://doi.org/10.1016/J.RENENE.2024.120887)**
- 3. M.A. Pans Castillo, P.C. Eames, Centralised thermal energy stores vs. decentralised thermal energy stores: A comprehensive study **of different configurations of a 4 th generation district heating system., in: CIBSE Tech. Symp., 2023. <https://www.cibse.org/knowledge-research/knowledge-portal/simulation-of-a-district-heating-system>.**
- 4. M.A. Pans, P.C. Eames, Optimisation of a theoretical 4th generation district heating network located at the town of Loughborough, **UK, in: EuroSun2022 Proc., 2022. https://doi.org/doi:10.18086/eurosun.2022.04.08. Available at http://proceedings.ises.org.**
- 5. M.A. Pans, G. Claudio, P.C. Eames, Theoretical cost and energy optimisation of a 4th generation net-zero district heating system **with different thermal energy storage technologies., Sustain. Cities Soc. 100 (2024) 105064. <https://doi.org/10.1016/J.SCS.2023.105064>.**
- 6. M.A. Pans, G. Claudio, P.C. Eames, Modelling of 4th generation district heating systems integrated with different thermal energy **storage technologies – Methodology, Energy Convers. Manag. 276 (2023) 116545. [https://doi.org/10.1016/J.ENCONMAN.2022.116545.](https://doi.org/10.1016/J.ENCONMAN.2022.116545)**

Methodology: Key parameters specified for the simulation.

SHARE OF HEATING DEMAND MET BY ONSITE ZERO-CARBON HEAT SOURCES WHEN USING PV-GENERATED ELECTRICITY TO POWER HPs

In the autumn/winter **months heat is supplied mostly by HPs powered by nonzero-carbon grid electricity**

✓ **In spring/summer heat is mostly supplied by onsite zero-carbon heat sources, i.e. HPs powered by onsite PVgenerated electricity, ETSTC and STES**

PV-GENERATED ELECTRICITY vs. WIND GENERATED ELECTRICITY TO POWER HPs

✓ **When using onsite wind-generated electricity to power HPs, heat demands can be mostly met by zero-carbon onsite heat sources for the whole year 2019**

When reaching the maximum STES storage capacity:

- **1) Any extra electricity produced by onsite wind-generated is sold to the grid.**
- **2) Any extra heat produced by ETSTC is shed or used in other applications**

RESULTS: share of heating demand met by the different heat sources considered for the ULC-DHN, totals for Loughborough, year 2019. Comparison between PV and Wind

Contribution of different heat sources to meet heat demands Loughborough, onsite PV, year 2019

50 0.0 2.5 RESULTS: PV capacity and Wind capacity for Loughborough, years 2000 - 2019126.7 No.7 Wares 2000 - 2019
Temperature (19.49°C) **produce temperature (19.44°C**

EFFECT OF LOCATION ON THE SHARE OF HEATING DEMAND MET BY ONSITE ZERO-CARBON HEAT SOURCES

RESULTS: Average irradiance, air temperature, PV capacity and Wind capacity for Loughborough, years 2000 - 2019

✓ **When using Windgenerated electricity to power HPs in Bournemouth the heat demands can be met almost entirely by onsite zero-carbon heat sources**

CONCLUSIONS

- ✓ **When comparing with onsite PV, the simulations show that using on-site wind generated electricity to power heat pumps leads to a higher share of heating demand met by onsite zero-carbon heat sources, meaning a higher reduction in operational cost and thus a lower levelized cost of heat calculated for 20 years.**
- ✓ **Among all three cases studied (corresponding to three different locations of the ULC-DHN), Bournemouth has the better conditions for the usage of HPs powered by wind-generated electricity, reaching an almost 100% of share by the year 2019 (with a calculated levelized cost of heat for the period 2000 – 2019 of 1.5 p/kWh).**
- ✓ **Loughborough and Glasgow would need a both higher capacity of onsite wind and greater volume of STES to reach a 100% of share of heating demand met by onsite zero-carbon heat sources for the year 2019. However, with the capacity of onsite wind and the volume of STES assumed, the calculated share was an acceptable ca. 80% with a LCOH of ca. 3 p/kWh.**

FUTURE WORK

Study of the behaviour of the ULC-DHN for the period 2020 – 2039, including predictions in the air temperature variations due to the global warming effects provided by UK Climate Projections (UKCP) [17] and projections for the CO² emissions per kWh of electricity produced in the UK.

The role of distributed thermal energy storage in achieving Net Zero DHW and Space Heating

Miguel Angel Pans Castillo

Department for Energy Security and Net Zero, Solar photovoltaics deployment, (2024). https://www.gov.uk/government/statistics/solar-photovoltaics-deployment.

RESULTS: Total heat stored in STES

RESULTS: Total heat stored in STES

RESULTS: Total heat stored in STES

✓ **When using onsite wind-generated electricity to power HPs, the STES reaches its maximum heat capacity by August, allowing to use the stored heat in the autumn months of September and October**

Methodology: Correlation between the outdoor temperature and the heat demands for Holywell Park, Loughborough University, UK, for the year 2021 (left) and historic CO_2 emissions per kWh of grid electricity for the **North West region of the UK, 2021 (7% transmission and distribution loss included) (right).**

