Performance Analysis of High-temperature Chemical Heat Pump with Metal Hydrides

Yunting Ge, Xinyu Zhang, Arton Merovci School of the Built Environment and Architecture, London South Bank University 103 Borough Road, London ,SE1 OAA, UK yunting.ge@lsbu.ac.uk

Engineering and Physical Sciences Research Council

Waste heat recovery from industrial sites (~35°C & ~230°C) with advanced heat pump technology to obtain heat (~130°C)

- In an energy-intensive industrial site such as a steel plant, there is plenty of medium and lowtemperature waste heat which could be recovered for heating purposes with advanced metal hydride (MH) heat pumps.
- Compared to other heat pump systems the MH heat pump has some distinct advantages including low electrical power input, environmentally friendly working medium, compactness, and high-temperature heat delivery.
- Key challenges, however, are identification of suitable alloys and their characterisation for high-temperature MH heat pump application. This needs to be done before any theoretical and experimental analyses can be performed.
- To address these, a test rig for the high temperature MH heat pump research has been designed and fabricated. Correlation models for MH alloy selections and initial characterisation of MH alloys have been developed followed by the development of a transient heat pump simulation model.

Comparison between metal hydride and absorption heat pump cycles

Absorption Heat Pump Cycle

Metal Hydride (MH) Heat Pump Cycle

Selection of metal hydride alloys

Operating temperature and pressure range of different alloys

For each reaction process, the <u>van't</u> Hoff's law applies with following form:

$$\ln P_{H_2} = -\frac{\Delta H \times 1000}{RT} + \frac{\Delta S}{R}$$

London

South Bank University

To facilitate the MH alloy selection, P_h and P_1 are assumed the same as P_{m2} and P_{m1} correspondingly. In that case, the following formulas will follow:

 $\xi = \frac{\Delta H_1}{\Delta H_2}$

MH alloys to be selected-thermodynamic analysis

Coordinate points (ξ , η) for the applicable MH alloys and four straight lines at maximum and minimum temperatures of T_h and T_l, and constant temperature T_m(=120°C)

Coordinate points (ξ , η) for the applicable MH alloys and four straight lines at maximum and minimum temperatures of T_h and T_l , and constant temperature T_m (=130°C)

Coordinate points (ξ , η) for the applicable MH alloys and four straight lines at maximum and minimum temperatures of T_h and T_l, and constant temperature T_m(=140°C)

Identification of applicable MH alloy pair for the MHHP system

Applicable MH alloy pairs for T_m=130 °C

Pair No		MII alloy pair		COAc	Ý	w,	W2	Ph	Pi	Tb	T ₁
	HT MH alloy	LT MH alloy				kg	kg	bar	bar	°C	°C
1	LaNi _{4,0} Al _{0.4}	CeNi ₃ Cu ₂	0.946	1.421	0.666	0.59	1	51.122	9.853	202.04	23.20
2	LaNi4, Alus	Ce _{1.1} Ni ₂₅ Cu ₂₅	0.995	1.538	0.647	0.395	1	35.947	6.789	198.44	44.36
3	LaNi _{4,0} Al _{0.4}	CeNi25Cu25	1.003	1.464	0.685	0.589	1	56.178	9.853	206.95	26.55
4	CaNi ₅	CeNi ₃ Cu ₂	1.032	1.492	0.697	0.525	1	51.122	14.823	190.51	44.05
5	LaNi _A Alua	CeNigsCups	1.093	1,499	0.729	0.441	1	56.178	15.518	188.77	48.06
6	LaNi4.25Al0.75	ZrugTio.1Cr0.8Fe1.4	1.251	1.532	0.816	2.06	1	25.079	2.646	212.56	32.42
7	LaNI4.30MIN.0.70	2rGr _{0.8} Fe _{1.4}	1.286	1.608	0.800	0.714	1	15.660	1.926	206.03	46.54
8	LaNi4.75Al0.25	TI0.08Zr0.02V0.41Fe0.09Cr0.08Mn1.46	1.299	1.572	0.827	2.13	1	105.369	18.880	210.21	39.29
9	LaNi4.5Alu5	Z r _{0.8} Ti _{0.2} Cr _{0.8} Fe _{1.4}	1.301	1.699	0.766	0.93	1	58.536	6.789	223.09	44.69
10	LaNi _{4.7} Al _{0.3}	TI0.08Zr0.02V0.41Fe0.09Cr0.08Mn1.46	1.321	1.586	0.833	1.38	1	105.369	15.518	224.22	31.47
11	LaNi4.5Alus	LacsYo4NI4.8Mno2	1.329	1.703	0.781	0.867	1	56.311	6.789	221.04	46.27
12	LaNi4.56Mn0.44	La _{0.6} Y _{0.4} NI _{4.5} Mn _{0.2}	1.330	1.685	0.789	0.698	1	56.311	6.342	221.70	44.15
13	LaNI4.5Alo.2	TI0.98Zr0.02V0.41Fe0.09Cr0.08Mn1.46	1.348	1.569	0.859	1.25	1	105.369	23.342	198.23	48.21
14	LaNi4.85Mn0.17	CeNi4Zr	1.439	1.611	0.893	3.85	1	140.580	22.112	218.26	38.39
15	LaNI4.5Alo.2	CeNiaZr	1.464	1.604	0.913	2.87	1	140.580	23.342	214.01	40.47
16	LaNI4.51Mno.25Alo.15	LacsYo4NI48Mnc2	1.375	1.714	0.802	0.52	1	56.311	7.232	219.40	48.26
17	LaNI4 81 Mno.28 Alo 15	Z r _{0.8} Ti _{0.2} Cr _{0.6} Fe _{1.4}	1.346	1.710	0.787	0.56	1	58.536	7.232	221.47	46.68
18	LaNi4.88Mn0.17	TI0.98Zr0.02V0.41F00.09Cr0.09Mn1.46	1.330	1.575	0.844	1.68	1	105.369	22.112	202.04	45.89
19	LaNI4.8Aloz	CeNi4Cr	1.326	1.477	0.898	2.50	1	129.697	23.342	209.49	26.44
20	LaNI4 sAloz	TiamZrantVo.43FeamSransMn16	1.312	1.567	0.838	1.22	1	145.585	23.342	215.99	34.53
21	LaNi4.60Mno.44	Z r _{0.8} Ti _{0.2} Cr _{0.6} Fe _{1.4}	1.301	1.681	0.774	0.748	1	58.536	6.342	223.71	42.58
22	LaNiAI	LanaYaaNlanAlaa	1 295	1.563	0.829	37	1	14 921	1 521	221 31	46.60
23	LaNI4 sAlo 7	CeNi ₃ Cr ₂	1.272	1.417	0.898	2.713	1	125.899	30.032	207.85	35.55
24	LaNi ₄ Al	ZrCr _{0.6} Fe _{1.4}	1.174	1.564	0.751	2	1	15.660	1.078	223.38	29.19
25	LaNi47Aloa	CeNi ₃ Cu ₂	1.039	1.452	0.716	0.444	1	51.122	15.518	183.89	46.57
26	LaNIA NI Mno 20 Alo 15	Cet NissCuss	1.003	1.546	0.649	0.234	1	35.947	7.232	196.62	46.94
27	LaNi4 coMrto as	CeNi25Cu25	0.997	1.447	0.689	0.538	1	56.178	9.641	204.62	25.59
28	LaNi4 50 Mno 44	Ce1 Ni26Cu26	0.972	1.524	0.638	0.313	1	35.947	6.342	199.60	41.62

Applicable MH alloy pairs for T_m=140 °C

	MH alloy pair		COA	LUAC	40	VV 1	W_2	Ph	1	/ h	1
	HT MH alloy	LT MH alloy	-	-	-	kg	kg	bar	bar	°C	°C
1	LaNi4.65 Mno.35	CeNi ₃ Cu ₂	0.954	1.405	0.679	0.54	1	57.100	12.669	205.44	35.69
2	LaNi4.6Alo.4	CeNi ₃ Cu ₂	0.956	1.421	0.673	0.59	1	57.100	12.816	207.81	36.29
3	LaNi4.65 Mn0.35	CeNi 2.5Cu2.5	1.026	1.447	0.709	0.538	1	63.472	12.669	210.83	38.08
4	LaNia 6Alo 4	CeNi 2 5 Cu2 5	1.030	1.464	0.703	0.589	1	63.472	12.816	213.47	38.63
5	LaNi4.25 Alo.75	Zr _{0.9} Ti _{0.1} Cr _{0.6} Fe _{1.4}	1.139	1.532	0.743	1.96	1	29.740	3.644	220.22	43.32
6	LaNi _{4.83} Mn _{0.17}	CeNi ₄ Cr	1.310	1.482	0.884	3.35	1	146.246	28.372	220.57	35.47
7	LaNi _{4.8} Al _{0.2}	CeNi ₄ Cr	1.288	1.477	0.873	4.95	1	146.246	30.032	216.25	38.20
8	LaNia 22 Mno 17	CeNi ₂ Cr ₂	1.260	1.422	0.887	3.65	1	125.899	28.372	211.93	32.49
Ð	LaNi _{4.8} Al _{0.2}	CeNi ₃ Cr ₂	1.245	1.417	0.879	5.41	1	125.899	30.032	207.85	35.55
10	LdIN14.75740.25	Celli3Cr2	1.240	1.419	0.874	4.02	1	123.899	24.201	220.38	24.30
11	Fco.sNio.2Ti	CeNi 2.5Cu2.5	0.996	1.412	0.705	0.464	1	63.472	10.655	212.62	30.05
12	Feo.sNio.zTi	CeNi ₃ Cu ₂	0.922	1.373	0.672	0.465	1	57.100	10.655	207.61	26.98
					-	-				Ŷ	n
m1 =	$n_{\pm 2}\Delta H_1 =$	$-(n_1Cv_1 + 1)$	NIDCI	$p_{1D})($	T	7 1					
n_{\perp}						I m I					
		· · ·			- n	m					_
					* n	m		_		$T_{m}(T)$	n-7
					-n	m		COA	_	$T_m(T$	h^{-7}
	· • • • • •	(rn T	(m)		COA	<i>c</i> =	$T_m(T)$	<u>h</u> -7
$m_{2} =$	$n_{t1}\Delta H_2$ –	$-(n_2Cv_2+1)$	W _{2R} C	$(p_{2R})($	$T_m - T_m - T_m$	(T_n)		COA	<i>_c</i> =	$\frac{T_m(T)}{T_h(T)}$	<u>h</u> -7
{n2} =	$n{t1}\Delta H_2$ –	$-(n_2Cv_2 + 1)$	$W_{2R}C$	$(p_{2R})($	$(T_m - T_m)$	(T_m)		COA	<i>_c</i> =	$\frac{T_m(T)}{T_h(T)}$	<u>h</u> -7 m-7
{n2} =	$n{t1}\Delta H_2$ –	$-(n_2 C v_2 + 1)$	W _{2R} C	$(p_{2R})($	$(T_m -$	(T_m)		COA	<i>c</i> =	$\frac{T_m(T)}{T_h(T)}$	<u>h</u> —7 m—7
$n_{n_2} =$	$n_{t1}\Delta H_2 -$	$(n_2 C v_2 + 1)$	$W_{2R}C$	$(p_{2R})($	$(T_m - T_m)$	(T_l)		COA	c =	$\frac{T_m(T)}{T_h(T)}$	<u>h</u> -7 m-7
$n_{n_2} = n$	$n_{t1}\Delta H_2 - $	$-(n_2Cv_2+1)$ $(n_2Cv_2+W_2)$	$W_{2R}C_{p_{2}}$	$(p_{2R})(T_r)$	$(T_m - T_m)$	(T_l)		COA	_с = со	$\frac{T_m(T)}{T_h(T)}$	<u>h</u> -7 m-7
$n_{n_2} = n$	$n_{t1}\Delta H_2 - $ $_{t2}\Delta H_2 - ($	$-(n_2Cv_2+1)$ $(n_2Cv_2+W_2)$	$W_{2R}C_{2R}C_{2R}$	$(p_{2R})(T_r)$	$T_m - T_m - T_m$	(T_l)		COA	_c = _ <u>co</u>	$\frac{T_m(T)}{T_h(T)}$	<u>h</u> -7 m-7
$n_{n_2} = n$	$n_{t1}\Delta H_2 - $ $_{t2}\Delta H_2 - ($	$-(n_2Cv_2+1)$ $(n_2Cv_2+W_2)$	$W_{2R}C_{2$	$(p_{2R})(T_r)$	$T_m - T_m - T$	(T_l)		COA ψ =	$c = \frac{co}{co}$	$\frac{T_m(T)}{T_h(T)}$	<u>h</u> —7 m—'

MH Alloy for MH1 (HT): $LaNi_{4.25}AI_{0.75}$ MH Alloy for MH2(LT): $Zr_{0.9}Ti_{0.1}Cr_{0.6}Fe_{1.4}$

Variation of COA, COA_c and $\boldsymbol{\psi}$ with different alloy pair numbers for T_m=130 °C

Variation of high and low hydrogen pressures with different alloy pair numbers for T_m =130 °C

PCT Phase diagrams with correlations and measurements

Figure 6 PCT phase diagram with correlations of three regions using limited measurement data

for MH alloy LaNi_{4.25}Al_{0.75} isothermal absorption

Figure 7 PCT phase diagram with correlations of three regions using limited measurement data

for MH alloy LaNi_{4.25}Al_{0.75} isothermal desorption

Average relative errors between correlations and measurement data

	α re	gion	α + β 1	region	β region		
MH Alloy	Absorption	Desorption	Absorption	Desorption	Absorption	Desorption	
	%	%	%	%	%	%	
LmNi _{4.91} Sn _{0.15}	10.35	18.38	4.03	6.47	1.49	2.13	
$Ti_{0.99}Zr_{0.01}V_{0.43}Fe_{0.09}Cr_{0.05}Mn_{1.5}$	20.99	9.32	9.89	1.95	2.20	1.28	
LaNi _{4.25} Al _{0.75}	13.79	9.68	9.54	5.90	1.99	1.31	
$Zr_{0.9}Ti_{0.1}Cr_{0.6}Fe_{1.4}$	10.25	10.61	2.40	4.92	2.27	1.43	

Test rig development of MH heat pump system

Two MH reactors (MH1 and MH2) in the rig

Vacuum

MFM₂

Heating

TB1 (220~260°C MFM₃

Heating (60~100°C

Ts

Charge

Cooling

(70~110°C)

— H2 Pipe

Test rig layout

- HT/MT/LT HTF Pipe

Description of operation cycle

Low-pressure operation $c \rightarrow d$

Description of operation cycle

High-pressure operation $a \rightarrow b$

Test rig is allocated in a purposely built hydrogen lab

London South Bank University

CFD model

Two purposely designed metal hydride reactors in a MHHP system

Design data for each MH reactor and connection pipe

Reactor	Do _{fi}	Di _{fi}	Domh	Dimh	Do _{re}	Di _{re}	Docn	Dicn
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
MH1	12.7	9.52	33.4	27.86	42.16	36.62	12.7	9.52
MH2	12.7	9.52	33.4	27.86	42.16	36.62	12.7	9.52

Model Equations

Mass equation:

$$(1-\mathcal{E})\frac{\partial\rho_m}{\partial t} = \dot{m}$$

Energy equation:

$$\rho C_p)_e \frac{\partial T_m}{\partial t} + \rho_g C_p^g \vec{V}_g \nabla T_m = \nabla (K_e \nabla T_m) + \dot{m} [\Delta H + T_m (C_p^g - C_p^m)]$$

Effective thermal conductivity:

$$K_{eff} = \mathcal{E}K_g + (1 - \mathcal{E})K_m$$

Absorption reaction kinetic equation:

$$\dot{m}_a = C_a \exp\left(-\frac{E_a}{RT}\right) \ln\left(\frac{P_g}{P_{eq}}\right) (\rho_{sat} - \rho_s)$$

Desorption reaction kinetic equation:

$$\dot{m}_d = C_d \exp\left(-\frac{E_d}{RT}\right) \left(\frac{P_{eq}-P_g}{P_{eq}}\right) \left(\rho_{sat}-\rho_s\right)$$

Van't Hoff equation:

$$lnP_{eq} = -\frac{\Delta H}{RT} + \frac{\Delta S}{R} + f_S(C - C_{max}/2)$$

CFD model

Performance parameters

The Coefficient of Performance (COP) of a metal hydride heat pump :

$$COP = \frac{Q_{M,A} + Q_{M,B}}{Q_H}$$

Where Q_H represents the high-grade useful heat input obtained at the heat input temperature,

 T_H . Q_M denotes the heat output at T_M .

$$Q_H = n\Delta H_{B,d} + \dot{m}_B C p_B (T_H - T_M)$$
$$Q_{M,A} = n\Delta H_{A,a} - \dot{m}_A C p_A (T_M - T_L)$$
$$Q_{M,B} = n\Delta H_{B,a} + \dot{m}_B C p_B (T_H - T_M)$$

The average heat transfer rate for each process over the time period from the starting time t_1 to the end time t_2 , with a duration of ΔT can be calculated as follows:

$$\overline{Q} = \frac{\int_{t_1}^{t_2} Q dt}{\Delta T}$$

The specific heat power defined as the cumulative heat output obtained over a complete cycle per unit mass of alloy:

$$SHP = \frac{Q_m}{(m_A + m_B)t_{cycle}}$$

model validations

Fig.3. Temperature distributions during absorption.

CFD Model Validation

Design and operating data and properties

Metal hydride	Process	ΔH	ΔS	C _{max}	f _s	E	C_a/C_d	C_p^m	C_p^{g}	k _{eff}	ε	ρ		
alloy														
	Absorption	24500	92		0.216	26000	265				0.507			
ZrooTio 1CrooFe14		[20]	[20]	1.47%	[31]	[20]	[20]			4.028		8400		
210.9110.1010.01 01.4		29770	104.13	[30]	0.251	23500	45	419 14890				[20]		
	Desorption	[20]	[20]		[31]	[20]	[20]		14890					
	Absorption	35900	102.5		0.963	24065	57			2.944	0.645			
LaNi4 25Alo 75		[32]	[32]	1.13%	[31]	[34]	[35]					7600		
	Desorption	38300	106	[33]	0.94	19430	9.57					[33]		
		[32]	[32]		[31]	[34]	[35]							
	•		De	signed op	erating c	ondition								
Licho	mada haat a	ouroo tor	maratura	(T)		402 [K]								
nigii-g		493 [K]												
Med		373 [K]												
Low-g		313 [K]												
		0.14 [kg s ⁻¹] $(u = 0.9 \text{ m/s})$												

Temperature distributions

Dynamic parameter variations

Zrog Tio Cros Fe14 - absorption

T₁ = 40 °C

a

3.2

3.4

Q

LaNi4.25Alo.75 - absorption

 $Q_{M,A}$

T_M = 100 °C

2.6

2.8

3.0

Performance evaluation at different operating conditions

Effects of thermal conductivity

Effects of thermal conductivity on average volume temperature and hydrogen concentration of metal hydride bed

Effects of thermal conductivity

the overall heat transfer

Effects of thermal conductivity on cycle time and SHP

Conclusions

- One metal hydride pair has been identified for the high-temperature MH heat pump;
- Correlation models of PCT phase diagram have been developed to characterize any MH alloy based on limited measurement data;
- A transient model of the MH heat pump system has been developed;
- The model can be used for the optimisation of system design and operation.

Thanks